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Abstract. An exact time-dependent multipole analysis of macroscopic electromagnetic 
fields is given for sources which may not have Fourier transforms, eg, they may spread out 
indefinitely in the course of time or have nonzero limits in the remote past or future. The 
multipole fields are determined by charge and energy conservation and the homogeneous 
Maxwell’s equations for vacuum fields, without the use of the inhomogeneous Maxwell’s 
equations or constitutive equations for the source material. The moments a t  each time are 
integrals of sources over the region spacelike to the space origin at this time. Since neither 
spherical Bessel functions nor associated Legendre polynomials are used, only rational 
functions are needed in this analysis. The problem of relating vector sources and fields is 
simplified by transforming i t  to an exactly equivalent scalar one. 

1. Introduction 

Blatt and Weisskopf (1952), Jackson (1962) and others have given exact expressions for 
each frequency component of the multipole moments of distributions of charge, current 
and magnetization. Rose (1955) has presented a detailed derivation of some of these 
results. Here we derive from less restrictive assumptions exact expressions for the 
multipole moments at each time instead of each frequency. While Granzow (1966) 
considered some aspects of a time-dependent multipole analysis, he determined the fields 
from their boundary values on a sphere rather than from their sources. 

This time-dependent multipole analysis includes the usual ones as special cases and 
has certain advantages : 

(i) The sources need not be confined to a fixed sphere over all time but can spread out 
indefinitely as do most sets of interacting or even non-interacting charged particles. 

(ii) No assumptions are made about the behaviour of the sources in the remote past 
or future. They need not approach zero asymptotically or possess Fourier time trans- 
forms. As a result, the multipole fields from sources which approach nonzero values 
asymptotically can be obtained as a special case. 

(iii) The only physical assumptions used to determine the multipole fields are 
charge and energy conservation and the homogeneous Maxwell’s equations for fields in 
vacuum. Since neither constitutive equations for the source material nor the inhomo- 
geneous Maxwell’s equations are used, the results are valid whatever inhomogeneity, 
anisotropy, nonlinearity, hysteresis or other properties are possessed by the sources 
provided only that all contributions to the macroscopic distributions of charge, current, 
polarization and magnetization are included. 

(iv) The space-time region is located from which sources can contribute to the 
multipole moments at each time as well as the region in which fields are determined by 
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these moments. This does for each multipole component of the fields what the retarded 
and advanced Green functions do for the sum of all the multipole components. 

(v) The linear map from sources to each multipole component of the fields commutes 
with rotations in space, time displacements, inversion about the space origin and time 
reversal. To keep this symmetry explicit and use it most effectively, neither coordinates in 
three space nor particular basis functions over the surface of a sphere such as spherical 
harmonics are introduced. 

(vi) Only rational numbers rather than other real or copplex numbers are used in any 
essential way. (A factor of 7r in certain intermediate steps could be eliminated by minor 
rearrangement of the calculation.) This partly reflects the fact that all representations of 
the rotation group SO, are real (Schur and Frobenius 1906). Neither associated 
Legendre polynomials nor spherical Bessel functions are needed. In addition to compu- 
tational convenience, this may have physical significance if electromagnetic theory were 
developed for a space-time whose local topology was not the usual manifold but instead 
allowed continuous coordinates from other number fields, which might be finite. 

(vii) The problem of relating vector sources to vector fields is reduced to an exactly 
equivalent one of relating certain scalar sources to scalar waves. 

Our basic physical assumptions are stated in § 2. In Q 3, three sequences of linear 
operators on functions over space-time are defined and certain of their properties given. 
Section 4 states the principal results of this paper, including a construction for each 
multipole component of the moments and fields from a given source. These results are 
proved in 5 5 .  To facilitate interpretation of the quantities and operators introduced, 
additional consequences of our assumptions are summarized in Q 6 and compared with 
others. 

2. Physical assumptiens 

Sources for electromagnetic fields consist of four macroscopic distributions over space- 
time: p, charge density in units of charge/volume;j, current density in units of current/ 
area ; P, polarization, or electric dipole density, in units of charge/area ; M, magnetization, 
or magnetic dipole density, in units of current/length. All sources vanish outside some 
sphere whose radius may change with time. Charge is conserved locally, 

v . j + p '  = 0, (1) 

where V is the gradient operator and prime denotes time differentiation. 
Electromagnetic fields consist of two three-vector fields : B, magnetic field in units of 

force/current x length; E ,  electric field in units of force/charge. The fields from sources 
(whether emitted or absorbed by them) are defined only outside a sphere enclosing the 
sources whose radius may change with time. These fields approach zero as the radius 
vector r increases without limit. They satisfy the homogeneous Maxwell's equations : 

V . B = O ,  V x E +  B' = 0, 

V . E = O ,  V x B-E'/c2 = 0, ( 2 4  

where c is the speed of light. In addition to the fields from sources, we also construct 
fields satisfying these homogeneous Maxwell's equations throughout all space-time 
without ever being emitted or absorbed. These are defined to be entire fields in analogy 
with entire functions over the complex plane. Unlike fields from sources, these entire 
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fields need not approach zero with increasing r. Entire fields can be viewed as fields 
whose sources are at infinity. 

Conservation of energy requires that the electromagnetic energy radiated from a 
source less the energy absorbed by it equals the work it does against electromagnetic 
forces. When the field is a sum of an entire field (BO, E") and the field from the source 
(B, E ) ,  the work done by the source is also a sum of two parts, the work done against 
forces from the external entire field and the work done against forces from the field of the 
sources themselves. The energy flux density or Poynting vector is then the sum of three 
parts, one proportional to  E" x Bo, one proportional to E x  B, and one proportional to 
the cross terms E" x B +  E x Bo. The first integrates to  zero since the incoming energy in 
any entire field equals the outgoing. The second integrates to the work done by the 
sources against forces from the fields they emit or absorb. The integral of the cross terms 
equals the work done by the sources against the forces due to the entire field: 

- 1 dtd3r(  j .  E" + P ' .  E" + M ' .  Bo)  = dtd'r . (E" x B+ E x Bo)/po ( 3 )  

where po = 1/coc2 is the permeability of the vacuum in units of force/current2. (In SI units 
po = 4n x lo- '  H m-l : in electrostatic units poc2 = 4n;  in electromagnetic units 
po = 4n; to use gaussian units, set B = H / c  and p0c2  = 4n.) 

Equations (l), ( 2 )  and ( 3 )  complete our assumptions concerning electromagnetic 
fields and their sources. These are consistent with the additional assumption that fields 
everywhere satisfy 

s 

V x B - E / C 2  = p 0 ( j + P + V x M )  and V .  E/c2 = ~ o ( p - V .  P )  

instead of equations (2b) .  Were this assumption made, equation ( 3 )  would follow from 
local energy conservation, V . S+ U'+ W = 0, with the Poynting vector 

E x B  
PO 

s=-- M x  B, 

the field energy density U = ( B 2  + E 2 / c 2 ) / 2 p 0  - M .  B, and the power density 

W =  j . E + P ' . E + M ' . B  

at which rate energy is transferred from the field to its sources. 

3. Mathematical preliminaries 

Both the presentation of our results and their proofs are facilitated by introducing three 
sequences of linear integral and differential operators on real functions over space-time. 
We define Xfl,,. to be the value at time t and position r of the function X f  obtained by 
operating with X on the function f .  

For each non-negative integer L, we define the integral operator 

where PL is the Legendre polynomial of degree L and the integral is over all space. This 
operator is one component in a multipole decomposition of the Green operator for 
Poisson's equation, ie, if -V2g = f a n d f  = 0 outside some sphere, then g = C, G L f  
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outside this sphere. The domain of GL includes all continuous functions which decrease 
faster than any negative power of r as r increases. When operating on any function in its 
domain, G, produces a solution to Laplace’s equation which is homogeneous of degree 
- L -  1 in r. These properties can be stated algebraically by 

r .  V G ,  = - (L+ l)GL, (r x V)’G, = G,(r x V)’ = - L ( L +  l ) G L ,  

G,r.V = -(L+3)G,, V’G, = G,V2 = 0, ( 5 )  

and if r~ is any spherically symmetric function over space-time with J: drra(t, r )  = 1 
for all t ,  then 

GLcsG, = 0 for L # K ,  

For each non-negative integer L, we define another integral operator 

The value of I , f  at time t and position r is a weighted average of values of ,f from t - r/c 
to t + r/c  at position r. The operator I ,  is normalized so that it leaves unchanged functions 
which are constant over time, and the sequence of operators I ,  converges to the .unit 
operator as L increases without limit. 

In addition to the integral operators G, and I,, we define a retardation operator K ;  
and an advancement operator K L  which each combines a radius-dependent time dis- 
placement with L time differentiations. Denoting the operator of time differentiation by 
a, we define K: recursively by 

Equation (7c) is satisfied by both K ;  and K L  and whenever this is the case we leave the 
superscript implicit. The domain of K ,  consists of all functions differentiable L times 
with respect to time. The operator K ,  leaves unchanged functions which are constant 
over time. Both I ,  and K ,  are dimensionless but G, has the dimensions of area. 

The operators G,, I ,  and K ,  all commute with the differential generators of rotations 
r x V and time displacements a, but not with Y . V ,  for it follows from equations (5 ) ,  (6)  and 
(7 )  that 

[ v .  V ,  G,] = 2G,, 



Time-dependent multipole analysis 1639 

The commutator [ v .  V, K J can be evaluated by expressing K ,  as 

where 6, is the polynomial with positive integral coefficients defined by Burchnall 
(1951). We then use [r  . V, f ( r d / c ) ]  = f ' (rd/c)ra/c ,  where f '  is the derivative of f with 
respect to its argument, to obtain equation (8c). This equation remains valid for negative 
as well as positive L if the recursion relation (7) is used to extend the definition of K ,  
accordingly. The operator K ,  for L negative is an integral instead of a differential 
operator and equation (8b) follows from I ,  = $(K?,- ,  + K : L - l ) .  

When operating on e-iur,  I, gives ( 2 L +  l)!!j,(kr)/(kr), and K ,  gives 

i(kr),+ 'hL(kr)/(2L- l)!! ,  

where k = wjc and j, and h, are the spherical Bessel and Hankel functions defined by 
Morse and Feshbach (1953). 

For large r ,  the asymptotic behaviour of I ,  f and K,f is 

4. Electromagnetic fields from sources 

Theorem. The outgoing fields emitted by sources (or the incoming fields absorbed by 
them) are uniquely determined by the assumptions of 5 2. The following construction 
gives these fields : 

Step 1. From the distributions p,  j ,  P and M construct two real functions over 
space-time, 

c( = ( r x V ) . ( j + P ' + V x M ) ,  (104 
f l  = - ( r  , V + 2) ( p  - V . P )  - r . (j + P' + V x M) ' / c2 .  (lob) 

These two functions defined locally from p - V . P, j +  P' + V x M and their first deriva- 
tives suffice to determine the electromagnetic fields outside any time-dependent sphere 
enclosing the sources. Were we to consider the fields inside such a sphere satisfying the 
inhomogeneous Maxwell's equations, then r . B and r . E would satisfy inhomogeneous 
scalar wave equations whose scalar sources would be proportional to the a and p of 
equation (10) respectively. For this reason, we call LY the magnetic source and /3 the electric 
souFce. 

Step 2. From the sources a and p of equation (IO) and the integral operators G, and I ,  
of equations (4) and (6), construct two real functions over space-time for each non- 
negative integer L by 

Since these functions satisfy Laplace's equation at each time and approach zero for 
increasing r, their values on any sphere determine them everywhere. Were we to expand 
these functions over a sphere as a sum of spherical harmonics Y y ,  the expansion coeffici- 
ents would be proportional to the usual multipole moments at each time. Rather than 
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expand p L  and qL as a sum of particular basis functions, we work with the functions them- 
selves and call them the multipole components of the magnetic moment and electric 
moment of the source. 

Step 3. From the moments p L  and qL of equation (1 1) and the integral operators KL of 
equation (7) construct incoming or outgoing waves, 

* L  = KLPL 

O L  = KLqL. 
These functions are solutions to the homogeneous wave equation and we call them the 
magnetic and electric waves respectively. They differ from the Hertz-Debye potentials by 
the factor L(L  + 1) (Debye 1909). They are related to the radial components of the fields by 
po%,bL = r . B, pOc2X$ ,  = r . E. 

Step 4.  From the incoming or outgoing waves $ L  and O L ,  construct the electro- 
magnetic fields 

[V x ( r  x V * L  + r x VO’,IPo 
L(L  + 1) 

BL = - , 

[ r  x VI& - c2V x (r x V)4L]po  
L(L+  1) 

EL = , 

for L # 0 and for L = 0 :  

Bo = 0, E,  = poc240r/r2 = -p0c2V4 , .  

Equations (12) and (13) define waves as an intermediate step in constructing fields from 
moments. While these waves are useful in our proofs and for certain interpretations of 
our results, the fields can also be expressed directly in terms of the moments with the 
radial parts of the fields and the contributions to the radiation fields separated. To do 
this, we use equation ( 8 4  and the vector identity 

r2V x ( r  x V )  = q r  x V ) 2 + r x  (r x V ) ( r .  V +  1) 

to obtain 

KL- l r  x (r x V)p i  
1 

B ---( ” LKLVpL + KLr  x Vq’, - 
L(L+ 1) (2L - l)c2 

L ( L +  1) 2 L -  1 

L -  

E - -A( Lc2KLVqL- KLr  x Vp’,-- 1 K L -  1r x (r x V)& L -  

Only the first terms on the right of equations (14) contribute to the radial parts of B and E 
and only the second and third terms contribute to the radiation fields at large r. The 
gradients of the moments and their first L + 1 time derivatives at the space-time point 
( t ,  r) determine the incoming field at ( t - r / c ,  r) and the outgoing field at ( t + r / c ,  r) .  

5. Proofs 

To prove the theorem of Q 4 and establish the validity of the construction given for the 
fields, we prove three lemmas. The first establishes that every solution to the homo- 
geneous Maxwell’s equations (2) can be derived from moments by equations (12) and 
(13). The second shows that certain entire fields satisfying the homogeneous Maxwell’s 
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equations throughout space-time can be derived from certain real functions. The third 
shows that energy conservation expressed by equation (3) is satisfied in the presence 
of these entire fields if and only if the moments are those given by equation (1 1). 

Lemma I .  I f  

v z p ,  = 0, 

vzq, = 0, 

r .  V p ,  = - ( L +  l)pL, 

r .  V q ,  = - (L+ l)q,, 

Pb = 0, 

qb = 0, 
(15) 

then the fields obtained by equations (12) and (13) satisfy the homogeneous Maxwell’s 
equations (2) .  All fields satisfying equations (2) which approach zero for increasing r 
are a sum over non-negative L of incoming and outgoing fields obtained from moments 
satisfying equations (1 5). 

Proo$ From the vector identity r2V2 = r . V ( r  . V + I )+  (r x V)’, and the commutators 
[ r .  V ,  r’] = 2r2 and [ r .  V ,  K,] from equation (8c), we obtain the commutator of K ,  
with the second order differential operator 0 = a2/c2 - V’, 

Thus, 

2 K , - , ( r . V +  L+ 1)--. P;: 
OKLP, = (K,O+[O,K,l)P, = -K,V2p,+= 

C2 

By the hypothesis of the lemma, V2p, = 0 and r . V p ,  = - ( L  + l)p, so that OK,p, = 0 
and similarly OK,q, = 0. Since K,p, and K,q, are solutions to the wave equation, 
the fields obtained from them by equations (13) satisfy Maxwell’s equation (2) .  

To show that arbitrary fields Band E satisfying Maxwell’s equations (2) and 
approaching zero for increasing r can be obtained from moments, we form i . .  B and 
r . E. From Maxwell’s equations (2) and the vector identity 

V 2 r  . u = ( r  . V + 2 ) V .  u - r  x V .  V x U ,  

it follows that r .  B and r .  E satisfy the wave equations O r .  B = 0 and O r .  E = 0. 
Each can be decomposed into an incoming and outgoing wave and each of these is 
uniquely determined by its values on the surface of a sphere. For convenience, we 
consider explicitly only the outgoing part of r .  B at t = 0 and show that it can be 
obtained by operating on a suitable p ,  with KLf . Similar arguments apply to the incoming 
as well as outgoing parts of r .  B and r . E at any time. The values of r .  B at t = 0 
depend on the values of p ,  and its first L time derivatives at t = - r/c. Since any con- 
tinuous function over the surface of a sphere can be extended to a harmonic function 
outside the sphere which approaches zero for increasing r (eg Hobson 1931) and these 
can be expressed as a sum of p ,  satisfying (15), we can obtain the outgoing part of r . B 
from a magnetic moment. 

For a concise statement and proof of the second lemma it is useful to define an 
adjoint x‘ for each operator X by 

f dt  d3rf(Xtg) = dt d3r g(Xf) f (16) 



1642 W C Davidon 

for all real functionsfand g on which the particular operators are defined. Among the 
immediate~onsequencesofdefinition(16)are(XY)~ = YtXt, Xtt = X,(r x V)' = - r  x V, 
(r . V)+ = - r . V - 3 , 8  = - 8, I L  = I, and K t t  = KL. The adjoint of GL is the operator 

rL 
4.n 

Gtfl,, ,  = - d3s P, (E) sFL-  ' f ( t ,  s) 

whose properties can be obtained from equations (5) by defining G-L- = GL. 

Lemma 2. For any differentiable function f over space-time on which lLGL is defined, 
ILGt f  is a solution of the wave equation OlLGLf = 0. An entire electromagnetic 
field (satisfying Maxwell's equations (2) over all space-time) can be obtained by using 
Z,GLffor either the magnetic or electric wave in equation (13). 

Proof: The commutator [U, I J can be determined analogously to [U, K,] in the proof 
of lemma 1, and it is 

l L + l ( r . v - L )  -. [O,ILI = - IL+- ) s: 2 ( 2L+3 

Thus 

2 nZ,Gt = (ZLO +[U, Z,])GI = - ILV2 +- ( 2L+3 

Since 

V2GZ = (GLV2)' = 0' = 0 

and 

( r . V - L ) G L  = [GL(r.V-L)'It = [GL(-r.V-L-3)lt  = 0' = 0 

by equations (5) and (16), it follows that OZ,GLf = 0 for anyfon which the operators 
are defined, so that substituting I,G,ffor the magnetic or electric wave in equation (13) 
gives an entire field. 

Among the functions on which ILGL is defined are real functions which can be 
differentiated any number of times with respect to space and time and which equal 
zero outside some bounded space-time region (real C" functions with compact sup- 
port). We call these test functions. 

The waves obtained from test functions by 4 = ZLGLfcome in from infinity and 
return entirely in the region spacelike to points at which f is nonzero. For fixed t ,  
4(f, rj is proportional to r L - l  though 4(t+ r/c ,  rj decreases as r - '  for sufficiently large r. 

Lemma 3. If BL and E,  are derived from moments p L  and q,, then equation (3) for 
energy conservation is satisfied for ever,y entire field Bo and E" derived from a test 
function if and only if p L  and q,  are related to sources by equations (10) and (11). 

Proof: We consider explicitly only the determination of the electric moments from 
sources, since the magnetic moments can be similarly obtained. If 1,GLfis an electric 
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wave, then by equation (13) 

E" - -~ poc2 v x (v  x V)I,Gt f. 
L(L + 1) L -  

The work done by sources against forces on them from this entire field is given by the 
left-hand side of equation (3). Expressing the entire fields in terms of the test function f 
and using equation (1) for charge conservation together with previously stated results, 
we obtain 

-1 dtd3r( j .  E"+P'.  E"+M' .  B") = ~ 'O 1 dtd3r  f'GLILB. (17) L(L + 1) 

The contribution to the radiated energy from the cross terms between the entire field 
and the field from the sources is given by the right-hand side of equation (3). While 
the integral is independent of which surface enclosing the sources is chosen, it is simplest 
to evaluate at large radii using the asymptotic expressions (9) for KL and I , .  We express 
B and E in terms of the electric moment qL by equations (12) and (13) and use the integral 
over solid angle 

S d R r .  [Vx(rxV)u]  x( rxVv)  = -L(L+l)  dRv(r .V+l)u  s 
which holds when at  least one of the functions U or t' is an eigenfunction of ( r  x V)2 
with eigenvalue - L(L + l), to obtain 

d td2r . (E"xB+ExBO) = ~ " s dt d3rf'qL. s L(L + 1) 

By equation (3) for energy conservation, equations (17) and (18) must be equal for all 
test functions f, hence qL = G L I J .  Similarly p L  = G L I L u ,  completing the proof of the 
lemma. 

These three lemmas together constitute a proof of the theorem of 8 4, for if every 
field satisfying Maxwell's equations (2) can be obtained from some moment and if 
just one set of moments is consistent with equations (1) and (3) for charge and energy 
conservation, then these three assumptions determine the field. 

6. Interpretation and comparison 

Except for normalization, the time-dependent moments constructed here are related 
to the moments Mf(w) and Qf(o)  defined by Blatt and Weisskopf (1952) and others by 

1 P  

dwMf(w)Yf(6,q5)r-L-' e-iur,  

where the sum is over M from - L to L and the integral is over all real w. 



1644 W C Davidon 

In contrast with the moments at one frequency, the moments at one time necessarily 
depend on p and cannot be expressed in terms of V x j  alone. French and Shimamoto 
(1953) considered an arbitrariness in the expressions for each frequency component of 
the moments. It is closely related to an arbitrariness in our definition ofthe scalar sources 
a and B by equation (10). Without changing either the moments or the fields obtained 
from these sources we can add to them any function of the form O f o n  which GLZL 

is defined, since by lemma 2, G,I,Of = (nZLGL)tf = Otf = 0. For example, by 
combining equation (loa) with the vector identity 

r x V . V x M = (r . V+2)V. M - r  . W / c 2  + Or.  M, 

we obtain an alternate equation for the magnetic source, 

a = r x  V .  ( j + P ' ) + ( r .  V+2)V. M-r . W / c 2 ,  

in which M enters in the same way P does in equation (lob) for the electric source B. 
For sources in a sphere of radius R emitting or absorbing only one wavelength A 

of radiation, terms in the multipole expansion with L >> R/A contribute little to the 
sum. There is in general no single wavelength for the radiation so that we need a more 
general convergence criterion for this time-dependent analysis. To obtain one, we 
first define a norm for the space of all possible moments by the conditions : 

(i) lqL1 = lqlaL for a point charge q fixed at position a ;  
(ii) (qJ  is invariant under rotations ; 

(iii) 1qLI2 depends quadratically on qL,  that is, 

I P P L + v q L I 2 + I P P L - v q L l 2  = 2P21P'.12+2v21qL12 
for all real numbers p and v and moments p L  and q L .  It  then follows from equation (14) 
that the power integrated over all directions radiated at each time by a source is given by 

kl l l p i L f  1q2 +c lq iL+  U12 , ( 1 L+ 1 
4xL(2L+ 1)!!(2L - l)! ! c~~ c 

where p i L + l )  is the (L+ 1)st time derivative of p L .  
The units of IpJ are current x length"', and the units of 1qJ are charge x length'.. 

For each L, the ratios lpff ')I/lp~'.l lIc and 1qf+ ')I,lqiL.! lIc are dimensionless. If N is an 
upper bound on these ratios for sufficiently large L, then the contribution to the radiated 
power from large L terms is bounded by a sum proportional to 

(L+ 1)N2L/L(2L + l)! ! (2L - l ) !  !. 

For large L, this is approximately C N2'./(2L)! which converges for all N to approxi- 
mately eN/2 .  Terms with L >> N make negligible contribution to the sum, so this 
provides a more general convergence criterion. It reduces to L >> R/A for radiation of 
wavelength A from sources within a sphere of radius R since in this case, N N R/A. 

When the source consists only of polarization and magnetization near the space 
origin, then 

1 1 
pl(t, r )  = y r .  1 d3s M(t, s) = - r .  m(t), 2xr 2nr3 

1 1 
q l ( t ,  r )  = y r .  1 d3s P(t, s) = % r .  n(t), 2xr 

where m(t) and n(t) are the magnetic and electric dipole vectors at time t .  It follows from 
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our definitions that lpll = Iml and lqll = In1 and that the fields given by equation (14)  
with these moments are the Hertz dipole fields (Hertz 1889) 

C 

E t + - , r  = - ( L ) E5( C 

where m, n and their time derivatives are to be evaluated at time t. 
We obtain an adiabatic approximation to the moments and fields from sources 

with negligible radiation by keeping only those terms of lowest order in 1/c2 in equations 
(10) through (14). In this approximation, the operators I, and KL are unit operators 
so that the magnetic and electric moments are 

p L  = G , r x V . ( j + P + V x M ) ,  

q L  = (L+ l ) G , ( p - V .  P). 

The electromagnetic fields in this approximation are 

P O C 2  E - --Vq, = - P ~ C ~ V G , ( ~ - V .  P).  
L + l  L -  

We conclude this section with the observation that the product of linear operators 
K:G,Z, is one multipole component of the retarded or advanced Green operator for 
the scalar wave equation, that is, if Og' = f, g+ is an outgoing wave and g- an incoming 
one, and f = 0 outside some sphere, then g* = ELK: G,I,foutside this sphere. From 
the definitions of I,, G, and K,, it follows that the sources which contribute to emission 
of each multipole component of the field to time t and position r are those in the region 
spacelike to the three-space origin at time t-r/c. Similarly, sinks which contribute to 
the absorption of each multipole component of the field from time t and position r 
are those in the region spacelike to the space origin at time t + r/c .  

7. Conclusions 

The multipole components of every electromagnetic field in vacuum can be obtained 
by equation ( 1 3 )  from corresponding components of two scalar solutions to the homo- 
geneous wave equation, II/ = r . B/po and 4 = r .  E/,uoc2. Equation (12) gives the 
outgoing parts of these waves at t+r/c and the incoming parts at t - r / c  in terms of 
the magnetic and electric multipole moments at time t. The moments at each time are 
integrals of scalar sources over the region spacelike to the three-space origin at this 
time (equation (1 1)). The scalar sources at each space-time point depend on p - V . P,  
j + P + V  x M a n d  their first derivatives at this same point as specified in equation (10). 

This method of multipole analysis is being applied to the study of classical scattering 
of electromagnetic radiation by moving dielectric spheres. The motions of the scatterers 
are less restricted than they would be for other methods of multipole analysis. The 
physical interpretation of the analysis is facilitated by relating each multipole component 
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of the scattered radiation to the positions of the scatterers and their time derivatives 
at an earlier time, rather than relating the Fourier time transforms of each. Computa- 
tional simplifications result from the transformation of the vector fields and sources 
to exactly equivalent scalar ones and the absence of Bessel functions and associated 
Legendre polynomials. 

Acknowledgments 

I would like to express my appreciation to Haverford College for providing me the 
opportunity to do this work, to Jerry Gollub for his comments on the manuscript, and 
to Felor Moran for her assistance in its preparation. 

References 

Blatt J and Weisskopf V 1952 Theoretical Nuclear Physics (New York: Wiley) Appendix B 
Burchnall J L 1951 Can. J .  Math. 3 62 
Debye P 1909 Ann. Phys., Lpz 30 57 
French J and Shimamoto Y 1953 Phys. Rev. 91 898 
Granzow K D 1966 J .  math. Phys. 7 634 
Hertz H 1889 Ann. Phys., Lpz 36 1 
Hobson E W 1931 Spherical and Elliptical Harmonics (Cambridge: Cambridge University Press) 
Jackson J D 1962 Classical Electrodynamics (New York: Wiley) chap 16 
Morse P and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill) p 1573 
Rose M E 1955 Multipole Fields (New York: Wiley) 
Schur I and Frobenius G 1906 Sitzgsber. preuss Akad. Wiss. 186 


